skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Tianfang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exacerbated thermal environment in cities, the urban heat island (UHI) effect as a prominent example, has been the source of many adverse urban environmental issues, including the increase of health risks, degradation of air quality and ecosystem services, and reduced resiliency of engineering infrastructure. Last decades have witnessed tremendous efforts and resources being invested to find sustainable solutions for urban heat mitigation, whereas the relative contributions of different UHI attributes and their patterns of spatio-temporal variability remain obscure. In this study, we employed the random forest (RF) method to quantify the relative importance of four categories of urban surface characteristics that regulate the surface UHI, namely the urban greenery fraction, land surface albedo, urban morphology, and level of human activities. We selected seventeen major cities from six megaregions in China as our study areas, with the RF training and test sets obtained from multi-sourced remote sensing and observational data products. It is found that the urban greenery coverage manifests as the most important environmental determinants of UHI, followed by surface albedo. The results are informative for urban planners, policymakers, and engineering practitioners to design and implement sustainable strategies for urban heat mitigation. 
    more » « less
  2. Marco Borga; Francesco Avanzi (Ed.)
  3. Abstract Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt as well as groundwater connectivity. In mountainous regions with limestone and dolomite geology, bedrock formations can host karst aquifers, which play a significant role in snowmelt–discharge dynamics. However, mapping complex karst features and the resulting surface‐groundwater exchanges at large scales remains infeasible. In this study, timeseries analysis of continuous discharge and specific conductance measurements were combined with gridded snowmelt predictions to characterize seasonal streamflow response and evaluate dominant watershed controls across 12 monitoring sites in a karstified 554 km2watershed in northern Utah, USA. Immense surface water hydrologic variability across subcatchments, years and seasons was linked to geologic controls on groundwater dynamics. Unlike many mountain watersheds, the variability between subcatchments could not be well described by typical watershed properties, including elevation or surficial geology. To fill this gap, a conceptual framework was proposed to characterize subsurface controls on snowmelt–discharge dynamics in karst mountain watersheds in terms of conduit flow direction, aquifer storage capacity and connectivity. This framework requires only readily measured surface water and climatic data from nested monitoring sites and was applied to the study watershed to demonstrate its applicability for evaluating dominant controls and climate sensitivity. 
    more » « less
  4. ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies. 
    more » « less
  5. Abstract In many regions globally, snowmelt‐recharged mountainous karst aquifers serve as crucial sources for municipal and agricultural water supplies. In these watersheds, complex interplay of meteorological, topographical, and hydrogeological factors leads to intricate recharge‐discharge pathways. This study introduces a spatially distributed deep learning precipitation‐runoff model that combines Convolutional Long Short‐Term Memory (ConvLSTM) with a spatial attention mechanism. The effectiveness of the deep learning model was evaluated using data from the Logan River watershed and subwatersheds, a characteristically karst‐dominated hydrological system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial attention mechanism improved performance for simulating discharge at the watershed outlet. Analysis of attention weights in the trained model unveiled distinct areas contributing the most to discharge under snowmelt and recession conditions. Furthermore, fine‐tuning the model at subwatershed scales provided insights into cross‐subwatershed subsurface connectivity. These findings align with results obtained from detailed hydrogeochemical tracer studies. Results highlight the potential of the proposed deep learning approach to unravel the complexities of karst aquifer systems, offering valuable insights for water resource management under future climate conditions. Furthermore, results suggest that the proposed explainable, spatially distributed, deep learning approach to hydrologic modeling holds promise for non‐karstic watersheds. 
    more » « less
  6. Abstract The hydrologic community has experienced a surge in interest in machine learning in recent years. This interest is primarily driven by rapidly growing hydrologic data repositories, as well as success of machine learning in various academic and commercial applications, now possible due to increasing accessibility to enabling hardware and software. This overview is intended for readers new to the field of machine learning. It provides a non‐technical introduction, placed within a historical context, to commonly used machine learning algorithms and deep learning architectures. Applications in hydrologic sciences are summarized next, with a focus on recent studies. They include the detection of patterns and events such as land use change, approximation of hydrologic variables and processes such as rainfall‐runoff modeling, and mining relationships among variables for identifying controlling factors. The use of machine learning is also discussed in the context of integrated with process‐based modeling for parameterization, surrogate modeling, and bias correction. Finally, the article highlights challenges of extrapolating robustness, physical interpretability, and small sample size in hydrologic applications. This article is categorized under:Science of Water 
    more » « less
  7. High-resolution mapping of irrigated fields is needed to better estimate water and nutrient fluxes in the landscape, food production, and local to regional climate. However, this remains a challenge in humid to subhumid regions, where irrigation has been expanding into what was largely rainfed agriculture due to trends in climate, crop prices, technologies and practices. One such region is southwestern Michigan, USA, where groundwater is the main source of irrigation water for row crops (primarily corn and soybeans). Remote sensing of irrigated areas can be difficult in these regions as rainfed areas have similar characteristics. We present methods to address this challenge and enhance the contrast between neighboring rainfed and irrigated areas, including weather-sensitive scene selection, applying recently developed composite indices and calculating spatial anomalies. We create annual, 30m-resolution maps of irrigated corn and soybeans for southwestern Michigan from 2001 to 2016 using a machine learning method (random forest). The irrigation maps reasonably capture the spatial and temporal pattern of irrigation, with accuracies that exceed available products. Analysis of the irrigation maps showed that the irrigated area in southwestern Michigan tripled in the last 16 years. We also discuss the remaining challenges for irrigation mapping in humid to subhumid areas. 
    more » « less
  8. Abstract Snow dominated mountainous karst watersheds are the primary source of water supply in many areas in the western U.S. and worldwide. These watersheds are typically characterized by complex terrain, spatiotemporally varying snow accumulation and melt processes, and duality of flow and storage dynamics because of the juxtaposition of matrix (micropores and small fissures) and karst conduits. As a result, predicting streamflow from meteorological inputs has been challenging due to the inability of physically based or conceptual hydrologic models to represent these unique characteristics. We present a hybrid modeling approach that integrates a physically based, spatially distributed, snow model with a deep learning karst model. More specifically, the high‐resolution snow model captures spatiotemporal variability in snowmelt, and the deep learning model simulates the corresponding response of streamflow as influenced by complex surface and subsurface properties. The deep learning model is based on the Convolutional Long Short‐Term Memory (ConvLSTM) architecture capable of handling spatiotemporal recharge patterns and watershed storage dynamics. The hybrid modeling approach is tested on a watershed in northern Utah with seasonal snow cover and variably karstified carbonate bedrock. The hybrid models were able to simulate streamflow at the watershed outlet with high accuracy. The spatial and temporal recharge and discharge patterns learned by the ConvLSTM model were then examined and compared with known hydrogeologic information. Results suggest that ConvLSTM simulates streamflow with higher accuracy than reference models for the study area and provides insight into spatially influenced hydrologic responses that are unavailable within lumped modeling approaches. 
    more » « less